Gain Tuning Is Not What You Need:

Reward Gain Adaptation for Constrained Locomotion Learning
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> In general, Reinforcement Learning (RL) is sample inefficient and » ROGER achieves constraint satisfaction with <5 violations over 50,000 training timesteps,

cannot satisfy constraints during learning, making real-world RL ROG ER(Reward-Orlénted Gains via Embodied Regulation) even when using small training samples (only =50 timesteps/update).
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Traditional RL lacks
constraints and always
violates them.
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intuitive constraint thresholds (max roll, max pitch, max torque)

» ROGER can be applied to other types of robots and control, e.g., FCNN + PPO.
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» Under restricted constraints, ROGER prioritizes reducing penalties first and then optimizes
the main objective once the constraints are satisfied.

PL-KIN, AFTER POLICY DEPLOYMENT, rpr = (5[?15) / (5§t + 5ﬁ2t) Y "
. - m— . d_ T = = s = upright body - | upright body bot/Envicommen Final Values #Violation (throughout)
C O n St ra I n e d R L constraint proximities penalty ratios ATApTIVE WEISTHNS salr> Y A Hobot t Default | CRPO | ROGER | Default | CRPO | ROGER
» ROGER is Lyapunov-stable and guarantees improvement of the primary e e | | Distnce (miocreward) | 10602 | 5750 | 1745 | oo | 0l
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> Fixed-weighting constrained RL enforces constraints by manually objective/reward after learning. Ml S fighi . 7 =02 | 0 | 000 | 000 | 105 | 107 | 10

Pitch (°), 7 = 45 8.27 10.88 5.35 108 108 10”7

Distance (m; o< reward) 46.10 82.48 92.25 n/a n/a n/a
Torque (Nm), 7 = 1.0 0.76 0.98 0.55 10712 0.88 10
Pitch (°), 7 = 10 6.13 3.66 5.53 0.08 107 4.7

Distance (m; oc reward) 5.23 6.42 6.57 n/a n/a n/a
Torque (Nm), 7 = 1.0 0.78 0.80 0.33 0.01 0.01 1077

Pitch (°), 7 = 10 5.10 4.38 2.06 0.14 0.01 1071

Distance (m; o< reward) 5.99 1.91 11.65 n/a n/a n/a
Torque (Nm), 7 = 1.0 0.91 0.94 0.40 1077 0.01 108
Pitch (°), 7 = 45 21.00 7.62 8.31 0.07 8.07 10

blue text: best performance (highest reward, lowest penalty); red text: %violation > 0.01
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tuning penalty weights or shaping reward functions.
» Adaptive-weighting constrained RL adjusts penalty weights
dynamically using primal-dual or switching mechanisms.

Techniques Reward Gain (\¢) Penalty Gain (\;)

Algorithm 1 Reinforcement Learning with ROGER

1: Perform exploration and collect trajectory 7.

2: Compute estimated penalties (|é;| and |3;|) using: [C‘jtq =59 ['atﬂ' /34

Fixed-weighting & Control Barrier Function (CBF) 1.0 (fixed) tuned and fixed

Primal-Dual Optimization (PDO) 1.0 (fixed) it + xRy — (18 — 8:))]+
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Online Learning of Auxiliary Loss (OL-AUX) 1.0 (fixed) Xit + NAVE[Ry:| VE[R;{]

3: Compute weighting gains (As) using ROGER: | Ay

Constrained Rectified Policy Optimization (CRPO) 0.0 if (exist ﬁ’,u > T1; — 0;) else 1.0 1.0 if (ﬁi ¢ > 1; — 0;) else 0.0

4. Update policy using combined reward or advantage: In conclusion, use ROGER when:
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